Search results for "ATOM LASERS"

showing 2 items of 2 documents

Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…

FUNDAMENTAL PHYSICSGeneral Physics and Astronomychemistry.chemical_elementHYPERFINE STRUCTURE01 natural sciences7. Clean energyATOMIC SPECTROSCOPYLASER IONIZATION SPECTROSCOPYATOMSCOMPLEX ATOMIC SPECTRALaser coolingIonization0103 physical sciences010306 general physicsSpectroscopyNUMERICAL METHODSHyperfine structurePhysicsHYBRID APPROACHATOM LASERSActinideConfiguration interactionCOUPLED-CLUSTER METHODSACTINIUMMEDICAL ISOTOPE PRODUCTIONActiniumchemistryLASER COOLINGIONIZATIONProduction (computer science)Atomic physicsCONFIGURATION INTERACTIONS
researchProduct

Very high specific activity erbium 169Er production for potential receptor-targeted radiotherapy

2019

Erbium 169Er is one of the most interesting radiolanthanides for new potential receptor-targeted β− therapy applications due to its low energy β− emissions, very low intensity ɣ rays and the possibility to use 68Ga or 44Sc as companion for diagnostic in a theranostics approach. Currently it can be produced in reactors through the neutron activation of highly enriched 168Er. The low specific activity of the produced carrier-added 169Er is limiting its use for receptor-targeted therapy. Nonetheless it is used for radiosynoviorthesis of small joints. The aim of this work is to develop a new large-scale production method for the supply of very high specific activity 169Er. Highly enriched 168Er…

Nuclear and High Energy PhysicsHIGH SPECIFIC ACTIVITIESMaterials scienceTargeted Radiotherapychemistry.chemical_elementLASER IONIZATION7. Clean energy030218 nuclear medicine & medical imaginglaw.inventionErbium03 medical and health sciences0302 clinical medicinePRECLINICAL STUDIESlaw[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Production (economics)HIGH SPECIFIC ACTIVITYIrradiationInstrumentationComputingMilieux_MISCELLANEOUSATOM LASERSRadiochemistrySELECTIVE IONIZATIONNuclear reactorERBIUMRESONANT LASER IONIZATIONLARGE SCALE PRODUCTIONSchemistryHigh specific activityER-169030220 oncology & carcinogenesisSEPARATION EFFICIENCYTARGETED RADIOTHERAPYIONIZATIONSpecific activityRECEPTOR-TARGETED THERAPYNeutron activationNUCLEAR REACTORSNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct